Ферросплавное производство

Выбор вида шихтовых материалов и способа их подготовки к плавке

Шихтовые материалы

Сырье, применяемое для получения ферросплавов, состоит из четырех основных групп:

  • рудный материал;
  • восстановитель;
  • осадитель или разбавитель;
  • шлакообразующий.

Рудная часть шихты. Как правило, ферросплавные заводы используют руды и концентраты, не требующие дополнительного обогащения. Исключение составляют бедные марганцевые и реже хромовые руды. Их подвергают пирометаллургическому обогащению и получают богатые по содержанию ведущего элемента шлаки, которые затем перерабатывают в конечную продукцию. Основным критерием при оценке качества руд является содержание в них ведущего элемента; оно должно быть максимально высоким. Следует, однако, учитывать, что запасы богатых руд истощаются, и поэтому в ферросплавном производстве используются более бедные руды. Так, если в 50-х гг. стандартное содержание марганца в марганцевых концентратах составляло 48—50 %, то в настоящее время оно снизилось до 40—46 %.

Ценность руды повышается с уменьшением в ней содержания вредных примесей, в первую очередь серы и фосфора. От концентрации вредных примесей зависит технология передела. Например, марганцевые руды с повышенным фосфором должны подвергаться предварительной дефосфорации методом выплавки малофосфористого шлака или другим методом, что удорожает передел.

Восстановители. Правильный выбор восстановителя и способа его подготовки в значительной мере определяет технико-экономические показатели производства. При выплавке ферросплавов в качестве восстановителей оксидов руды используют углерод, кремний и алюминий. Наиболее широко применяются углеродсодержащие восстановители: металлургический кокс, различные полукоксы и угли, древесные отходы и др. Углеродсодержащие восстановители, применяемые в производстве ферросплавов, должны обладать хорошей реакционной способностью, высоким удельным электросопротивлением, соответствующим для каждого сплава химическим составом, достаточной прочностью, оптимальным размером куска, термоустойчивостью и низкой стоимостью. В случае высокой реакционной способности восстановителя процесс начинается при более низких температурах и руда восстанавливается полнее. Значительное электросопротивление восстановителя обеспечивает более глубокую посадку электродов в шихте, т. е. уменьшение улета восстановленных элементов. Необходимо, чтобы количество вредных примесей в составе золы восстановителя было минимальным, так как они в значительной мере переходят в готовый сплав. Восстановитель должен обладать соответствующей механической прочностью, чтобы при подготовке, дозировании и подаче шихты образовывалось минимальное количество мелочи, поэтому небольшое содержание мелочи и летучих, отсутствие склонности к спеканию обеспечивают хорошее газовыделение на колошнике печи и облегчают обслуживание печи.

Наиболее широко используют при выплавке ферросплавов самый дешевый сорт восстановителя — коксик, получающийся при сортировке доменного кокса. Недостатками коксика являются невысокие электросопротивление и реакционная способность, относительно большое содержание золы, серы и фосфора и значительное нестабильное содержание влаги.

В качестве восстановителя при производстве ферросплавов широко применяется также полукокс. Электросопротивление последнего при температурах до 900°С значительно больше, чем коксика, а при более высоких температурах оно приближается к электросопротивлению обычного кокса. Полукокс содержит до 15 % летучих, механически мало прочен, имеет повышенную зольность, но это не препятствует его использованию при выплавке ферросилиция, так как основной составляющей золы является кремнезем.

К очень хорошим восстановителям относится древесный уголь, обладающий высокими удельным электросопротивлением, реакционной способностью и чистотой. Древесный уголь уменьшает спекание шихты и улучшает ее газопроницаемость, что особенно важно при выплавке высококремнистых марок ферросилиция и при работе закрытых печей. Однако он дорог, имеет малую по сравнению с коксом механическую прочность, характеризуется резкими колебаниями содержания золы и влаги (от 5 до 40%). Поэтому его стремятся заменять различными древесными отходами (опилки, щепа, стружка, лигнин).

Хорошими по качеству восстановителями являются нефтяной и пековый коксы, обладающие достаточной механической прочностью, высокой реакционной способностью и низким содержанием золы и летучих. Однако при температурах плавки они склонны к графитации, что ухудшает их реакционную способность и снижает электросопротивление. Это в сочетании с высокой стоимостью ограничивает их применение: они используются только при производстве особо чистых по примесям ферросплавов, ряда марок ферросилиция и ферровольфрама.

Осадители и разбавители. Основным железосодержащим компонентом шихты при выплавке сплавов кремния является стружка углеродистых сталей. Чугунная стружка из-за повышенного содержания в ней фосфора применяется лишь при выплавке сплавов, используемых в чугунолитейном производстве. Недопустимо употреблять стружку легированных сталей и стружку, загрязненную примесями цветных металлов. Нецелесообразно использовать железную руду взамен стружки, поскольку при этом увеличивается содержание углерода в шихте и вносится значительное количество шлакообразующих примесей.

Перспективным железосодержащим материалом для ферросплавного производства являются окалина и отходы, получающиеся в процессе огневой зачистки металла в прокатных цехах. При высоком содержании железа они имеют хороший гранулометрический состав, позволяющий добиться равномерного распределения железа в шихте.

В связи с дефицитом стальной стружки и значительными затратами на ее перевозку, может стать целесообразным использование железистых кварцитов в случае, если экономия на стоимости сырья и транспортных расходах будет больше, чем убытки от увеличения затрат электроэнергии и снижения производительности печей. Запасы железистых кварцитов составляют около 35 % балансовых запасов железных руд. Брикеты и окатыши из «хвостов», образующихся при обогащении железистых кварцитов (12— 15 % Fе0бщ, 60—67 % SiO2), и газового угля могут быть использованы при выплавке ферросилиция. Металлизованные окатыши были успешно опробованы как железосодержащий материал при выплавке 75 %-ного ферросилиция.

Шлакообразующие. В качестве шлакообразующей присадки в ферросплавном производстве используются известь, плавиковый шпат, реже кварцит и бокситы. Известь должна содержать более 90 % СаО и минимальное количество углерода и фосфора. Лучшей по качеству является известь, полученная обжигом известняка во вращающихся трубчатых печах. В шахтных печах получают крупнокусковую известь. Плавиковый шпат должен содержать не менее 65% CaF2. В отдельных случаях применяют флюоритовую руду (более 55% CaF2). В кварцитовой мелочи и боксите, используемых в качестве флюсов, концентрация вредных примесей должна быть минимальной.

Подготовка материалов

Подготовка кварцита к плавке состоит из дробления на щековых или конусных дробилках, отсева мелочи (менее 20—25 мм) и мойки. Последние две операции осуществляются одновременно на вибрационных грохотах и во вращающихся барабанах. Оптимальная фракция кварцита зависит от марки ферросилиция. Так, для 25 %-ного сплава принят размер кусков 20-60 мм, для 45 %-ного —20-70, для 75 и 90 %-ного — 20-80 мм. При мойке кварцита концентрация в нем глинозема снижается на 20-30%, что позволяет уменьшить содержание алюминия в сплаве и количество образующегося шлака. При подготовке кварцита его потери в виде отходов составляют 15%.

Углеродсодержащий восстановитель (коксик, полукокс) подвергается грохочению для отсева мелочи (менее 5 мм) и крупной фракции, которая дробится на валковых дробилках. После дробления коксик вновь отсевается на вибрационных грохотах. В шихту используют куски восстановителя размером до 25 мм.

В последнее время часть углеродсодержащего восстановителя при плавке ферросилиция заменяют отходами, содержащими SiC. Применение этих отходов особо эффективно при изготовлении бедных по кремнию марок ферросилиция. Отходы графитизации производства электродов (около 28% SiC, 19% Si02, 49% С, остаток Fe, Al2O3 и др.) и карборунда (около 63% SiC, 22% SiO2, 9% С, остаток Fe, А12О3 и др.) нуждаются в обогащении и окомковании.

Сокращение запасов богатых марганцевых руд обусловило необходимость вовлечения в производство марганцевых ферросплавов бедных руд. При обычных методах обогащения марганцевых руд на горно-обогатительных комбинатах фосфор только перераспределяется между товарными сортами концентратов, в результате чего в более богатых сортах отношение Р/Mn получается ниже, чем в сырой руде, и образуются низкосортные концентраты. Поэтому в настоящее время разрабатываются новые методы дефосфорации и обескремнивания марганцевых руд: химический, пирогидрометаллургический и др.

Химические и пирогидрометаллургические методы обогащения дают возможность получать богатые марганцевые концентраты высокой чистоты даже из низкосортных руд и шламов. Однако использование указанных методов сопряжено с большими затратами, а высокая степень очистки не всегда необходима для производства ферросплавов, к тому же в этом случае получаются тонкоизмельченные концентраты, что требует их окускования.

Задача окускования марганцевых руд может быть решена путем их агломерации, брикетирования и окомкования. Следует, однако, иметь в виду, что агломерация в два раза дешевле, чем брикетирование и окомкование. Агломерацию руд целесообразно осуществлять непосредственно на ферросплавном заводе, что позволит сократить потери сырья при транспортировке. Весьма эффективным является предварительный нагрев и восстановление марганцевых руд во вращающихся печах.

Проблема окускования хромовых руд может быть решена путем их брикетирования и окомкования. В этом случае эффективно предварительное восстановление хромовой руды в кипящем слое.

Окускование шихты весьма перспективно и для плавки ферросилиция. Успешно опробована выплавка ферросилиция на брикетах, песчано-рудном агломерате.