При выплавке ферросиликомарганца в закрытых и герметичных рудовосстановительных электропечах с непрерывным процессом загрузки шихтовых материалов наряду с металлом образуется такой побочный продукт как расплав шлаков силикомарганца. Естественно, в металлургии разрабатываются новые технологии, которые способствуют снижению выхода шлаков. Однако, учитывая рост объемов добычи и переработки сырья и продолжающийся процесс накопления отходов, необходимо ориентироваться на шлаки как на первостепенный источник дешевого и, главное, эффективного сырья для многих отраслей народного хозяйства и, в первую очередь, для самой металлургии и производства строительных материалов.

Шлаковые расплавы силикомарганца в Украине преимущественно обрабатываються водой в гранулированный шлак, шлаковую пемзу, песчано-щебеночную смесь, щебень и песок. В последние годы ферросплавные шлаки широко используются и в самой металлургии в качестве шихтовых материалов. Опыт Новолипецкого металлургического комбината и «Азовстали» свидетельствует, что шлак может заменить агломерат, марганцевую руду, известняк. Однако наиболее энергосберегающим способом переработки шлаков является непосредственное их использование в виде высокотемпературного расплава, поступающего из печи, и формование из него cтеклокристаллических материалов методом литья. Такое производство целесообразно организовывать на металлургических заводах или в непосредственной близости от них, что обеспечивает сохранение физического тепла и организацию малоотходной энергосберегающей технологии, позволяющей в 4 – 7 раз сократить производственные площади, значительно снизить себестоимость основной продукции и создать комплексные ресурсосберегающие технологии. Вместе с тем вопросы регулируемой кристаллизации при получении стеклокристаллических материалов из огненно-жидких шлаков изучены еще недостаточно и этим вызывается несовершенство технологии и недостаточно высокие показатели свойств получаемого материала.

По химическому составу силикомарганцевые шлаки Никопольского завода ферросплавов представляют собой многокомпонентные системы, которые относятся к системе R2O – MgO – CaO – MnO – Al2O3 – SiO2 и имеют следующее содержание основных оксидов: 10 – 20 % МnО, 30 – 50 % SiO2, 10 – 25 % СаО, 1 – 2 % MgO, 24 – 26 % Al2O3.

Шлаковые расплавы характеризуются повышенным содержанием SiO2, MnO и пониженной концентрацией Al2O3. При использовании в шихте для сплава с 0,2 % Р большего количества импортных руд (Ганы, ЮАР, Австралии и др.) содержание глинозема повышается до 10,2 % (табл. 1).

Химический состав шлака выплавки ферросиликомарганца марки МнС17 с различным содержанием фосфора

Высокая концентрация SiO2 в шлаках ферросиликомарганца обусловлена необходимостью достижения соответственно высокой активности SiO2, что создает термодинамические предпосылки для получения сплава с требуемым содержанием кремния. Вместе с тем, кремнеземистые шлаки характеризуются высокой вязкостью, что затрудняет гравитационное разделение ферросиликомарганца и шлакового расплава в ванне печи и при выпуске продуктов восстановительной плавки через одну летку в приемный ковш. Шлаковые расплавы с высоким содержанием SiO2 имеют более высокое удельное электрическое сопротивление, что способствует выделению и концентрированию в них определенной части подведенной электрической мощности. Вязкость и электропроводность шлаковых расплавов повышается с понижением температуры и особенно ниже 1 351 К, что связано, в том числе, и с выделением в вязком силикатном расплаве твердых наноразмерных фаз. При постоянной температуре вязкость и электропроводность шлаковых расплавов зависят от химического состава шлаков. С повышением содержания SiO2 и снижением МnО вязкость и электропроводность шлаков повышаются.

Химический анализ шлаков силикомарганца из рудотермических печей производился рентгеноспектральным методом (РСА) ежесуточно в Центральной заводской лаборатории (ЦЗЛ) на многоканальном рентгеновском спектрометре СРМ-200. Кроме того, периодически производился полный химический анализ исследовательской группой ЦЗЛ завода по всем элементам, содержащимся в шлаке силикомарганца по стандартным методикам. Физико-химический анализ процессов выплавки силикомарганца показал, что по мере прогрева марганцевых концентратов на колошнике печи и их опускания в зону более высоких температур происходит химическое взаимодействие кремнезема с марганцеворудными минералами, что сопровождается образованием первичного легкоплавкого оксидного расплава. Температура появления жидкой фазы при нагреве концентрата I сорта (содержание Mn – 43 %) составляет 1 160°С, II сорт – (содержание Mn – 34 %) – всего лишь 1 075°С. Поэтому сповышением содержания кремнезема в исходных марганцевых концентратах первичное шлакообразование происходит в более высоких горизонтах печи. Поскольку температура восстановления закиси марганца сравнительно высокая, то восстановление марганца углеродом кокса происходит из жидкой оксидной фазы. Преждевременное шлакообразование приводит к накоплению в печи оксидного расплава с высоким содержанием марганца. Наличие в шихте СаO, Al2O3, MgO оказывает существенное влияние на получение конечных продуктов плавки: сплава и шлака. Невосстанавливаемая и практически нейтральная Al2O3 является шлакообразующим балластом, от которого зависит количество шлака. СаО практически полностью переходит из шихты в шлаковую фазу.

Сопоставление экспериментальных данных показывает, что существенное повышение температуры отрицательно сказывается на физических свойствах конечных шлаков. Оптимальная температура, при которой достигается извлечение марганца (при колебании содержания MnO в шихте от 40 до 45 мас.%) – 1 540 – 1 580°С. При этом кратность шлака будет колебаться от 0,9 до 1,3, а основность: (CaO + Al 2O3 + MgO)/ SiO2 = 0,45 − 0,6 .

Железо и марганец в конечных шлаках в условиях восстановительной плавки присутствуют в виде закисей. При выплавке марганцевых сплавов, в существующих руднотермических печах с непрерывной загрузкой шихты, металлический и шлаковый расплавы близки к равновесным. Сопоставление результатов серийных химического и рентгеноструктурного анализов шлаков и шихтовых материалов, проведенных на ОАО “НЗФ”, показали (рис. 1), что выход шлаков увеличивается с увеличением содержания Al2O3 в шихтовых материалах и с уменьшением отношения восстановителя к содержанию марганца в концентрате и находится в обратной зависимости по отношению к MgO / Al2O3 и извлечению марганца в сплав.

Изменение выхода шлака в зависимости от состава шихтовых материалов

Таким образом, колебания состава сырьевых материалов обуславливает количество образующегося шлака и сплава. Так, увеличение в сырьевых материалах Al2O3 и уменьшение MgO приводит к увеличению выхода шлака Si — Мn. Увеличение Al2O3 обусловлено изменением его содержания в алгомерате и концентрате, а также в золе восстановителя, что вконечном итоге определяют колебания Al2O3 до 10 % в конечном шлаке. Содержание в шлаке CаO, MgO обусловлены только колебаниями их в исходном сырье, SiO2 – ходом электротермических процессов восстановления Mn и Si. Содержание щелочей K2O и Na2O в пределах 3 – 5 мас. % обусловлено колебаниями в исходном сырье, а также вносится восстановителем и расходуемой массой электродов.

Одна из важнейших физико-химических характеристик шлаковых расплавов – вязкость — оказывает огромное влияние на распределение температур в руднотермической печи, перемещение шихтовых материалов в печи, кинетику восстановительных процессов, величину и количество металлических включений в шлаке, а также на однородность силикатного расплава при заполнении форм и формировании отливок. Вязкость является необходимой характеристикой шлаковых расплавов при разработке технологии.

Влияние различных оксидов на вязкость одного и того же шлакового расплава далеко не одинаково вследствие различного в них содержания кислорода, разукрупняющего комплексы, так как равные весовые количества разных оксидов содержат разное количество ионов кислорода. Атомное содержание кислорода, вносимого в шлак оксидами CaO, MgO, MnO, K2O составляет 178, 230, 150, 100 соответственно (рис. 2).

Атомное количество кислорода (02- ), вносимого в шлак оксидами

Зависимость высокотемпературной вязкости шлака силикомарганца от его химического состава подчиняется общим законномерностям: увеличение Al2O3 в составе шлаков повышает вязкость, а щелочных, щелочноземельных и закиси марганца – снижают вязкость. Изменение суммарного содержания щелочей с 5,7 до 4,4 мас. % при одновременном увеличении СаО с 12,8 до 15,8 мас. % и Al2O3 c 8,0 до 10,4 мас. % при почти одинаковом содержании МnО, MgO и SiO2 снижают вязкость шлака при температуре 1 450°С с 0,81 до 0,61 Па∙с.

Поверхностное натяжение и плотность высокотемпературных шлаков силикомарганца увеличивались от 455 до 479 кДж/м и от 2 820 до 2 980 кг/м3 соответственно с понижением температуры отбора и закалки огненно-жидкого шлака от 1 500°С до 1 350°С.

Выводы. Технологические свойства шлаков силикомарганца (вязкость, поверхностное натяжение, жидкотекучесть) свидетельствуют о том, что наиболее эффективным способом формования изделий из расплава без его подшихтовки другими компонентами является литье, а температурный интервал формования 1 500 — 1 380 °С.