yandex.metrica
Электрометаллургия

Техника получения и измерения вакуума в металлургии

Использование вакуума в металлургии

С целью повышения качества стали в сталеплавильных цехах применяют вакуумную (при давлениях газа значительно ниже атмосферного) обработку металлических расплавов.

Основной характеристикой вакуума является остаточное давление в системе. Приближенную оценку остаточного давления можно давать, пользуясь понятием глубины вакуума. Условно различают низкий > 100 Па, средний 100…0,1 Па, высокий 0,1…0,0001 Па и сверхвысокий < 0,0001 Па вакуум. В вакуумных установках для выплавки и обработки стали применяют низкий, средний и высокий вакуум. Сверхвысокий вакуум в металлургии используют лишь в научных исследованиях.

В сталеплавильном производстве вакуум используют в технологических процессах, существенно разнящихся по предельным допустимым давлениям, объемам вакуумных камер, газовыделению из металла в единицу времени, содержанию пыли в удаляемых газах. В зависимости от конкретных условий установки комплектуют соответствующими системами вакуумирования. Основными элементами любой вакуумной установки, кроме рабочей камеры, в которой создается разрежение, являются насосы для эвакуации газов и приборы для измерения остаточного давления.

Вакуумные насосы

Укажем важнейшие характеристики вакуумного насоса, по которым оценивают его пригодность для данных условий.

Быстрота действия (скорость откачки) — определяется объемом газа, проходящим через сечение выпускного патрубка при данном давлении. С изменением давления в системе изменяется и быстрота действия насосов (рис. 66). Характер зависимости скорости откачки от давления определяет целесообразность использования тех или иных насосов в требуемом диапазоне давлений.

Зависимость быстроты действия S механических масляных (а) и паромасляных диффузионных (б) насосов от давления на впуске Рвп
Рис. 66. Зависимость быстроты действия S механических масляных (а) и паромасляных диффузионных (б) насосов от давления на впуске Рвп

Начальное давление — выпускное давление, начиная с которого насос начинает нормально работать. Насосы некоторых типов могут работать начиная с атмосферного давления (рис. 66, а), однако существуют и насосы, которые характеризуются начальным давлениєм ниже атмосферного (рис. 66, б). Перед включением таких насосов в системе необходимо создавать предварительное разрежение (форвакуум).

Максимальное выпускное давление — предельное давление на стороне выпускного патрубка насоса, превышение которого приводит к возрастанию давления на стороне патрубка. Некоторые типы насосов не могут выбрасывать откачиваемый газ в атмосферу, и для обеспечения их нормальной работы сжатый газ со стороны выпуска необходимо удалять другими насосами.

Предельный вакуум — минимальное давление, которое может быть достигнуто данным насосом.

Принцип работы насосов разных типов в значительной мере определяется характером движения газов в диапазоне рабочих давлений насоса. В зависимости от степени разрежения движение газа может происходить в турбулентном, инерционном, вязкостном, молекулярно-вязкостном или молекулярном режимах.

В начальный момент откачки газовый поток характеризуется большой скоростью истечения и наличием завихрений, т. е. его движение происходит в турбулентном режиме. С увеличением давлення и скорости истечения завихрения исчезают, а режим движения определяется силами инерции газовой среды, вследствие чего его называют инерционным. При дальнейшем понижении скорости истечения инерционный режим переходит в вязкостный. При этом режиме газ у стенок почти не движется, а по мере удаления от стенок одни слои газа скользят относительно других. Скорость потока в этом случае не достигает максимума в центре трубопровода. Характер движения такого потока определяется вязкостью газа. В области низких давлений, когда длина свободного пробега молекул становится соизмеримой с диаметром трубопровода, молекулы перемещаются, почти не взаимодействуя одна с другой. При этом влияние внутреннего третя (вязкости) несущественно, и поток движется в молекулярном режиме. В переходном от вязкого к молекулярному режиму наряду с внутренним трением газа наблюдается независимое движение молекул.

В зависимости от диапазона давлений, в пределах которого достигается максимальная производительность, насосы подразделяют на форвакуумные, высоковакуумные и бустерные (промежуточного разрежения). В металлургии получили распространение насосы, которые по принципу действия могут быть разделены на две группы:

  • механические с вращающимся ротором, действие которых основано на вытеснении движущимися частями газа, заполняющего рабочий объем;
  • пароструйные, в которых используется эжектирующее действие струи пара рабочей жидкости в результате диффузии молекул газа в струю или вязкостного захвата их.

В механических насосах возможен прорыв газа через зазоры между трущимися частями со стороны сжатия на сторону выпуска. Для уплотнения зазоров и смазки трущихся деталей в насосах многих типов применяют специальное вакуумное масло. Эти насосы образуют группу механических масляных насосов. Кроме того, имеются сухие механические насосы, в которых масло для уплотнения не применяют.

Устройство пластинчато-роторного насоса
Рис. 67. Устройство пластинчато-роторного насоса: 1 —камера, 2 —бак с маслом, 3 — пластина, 4 — рабочий объем, 5 — ротор, 6 и 7 — впускной и выпускной патрубки, 8 — выпускной клапан

Из масляных насосов нашли широкое применение пластинчато-роторные, пластинчато-статорные и золотниковые насосы. В корпусе пластинчато-роторного насоса (рис. 67) вращается эксцентрично расположенный ротор, в пазах которого находятся две пластины. Пружиной пластины прижимаются к стенкам корпуса. Точки касания пластин и ротора стенок камеры делят рабочий объем камеры на несколько частей: увеличивающийся при вращении объем впуска, уменьшающийся объем выпуска и промежуточный. В результате увеличения объема на стороне впуска создается разрежение и откачиваемый газ из камеры засасывается в насос. На стороне выпуска газ сжимается и при давлении, превышающем давление пружины выпускного клапана, выбрасывается из насоса. Корпус насоса погружен в бак с маслом, которое, просачиваясь в насос, уплотняет зазоры и предотвращает обратный прорыв газа. Одновременно масло охлаждает трущиеся часта насоса и препятствует поступлению газа в насос из атмосферы. В пластинчато-статорных насосах (рис. 68) ротор эксцентрично насажен на ось, совпадающую с геометрической осью камеры. Точка касания ротора стенок камеры описывает при вращении окружность. Для уменьшения трения ротор изготовляют по типу роликового подшипника. Точка касания ротора стенок камеры и пластина, проходящая через паз в статоре и прижимаемая к ротору пружиной, делят рабочую камеру на объемы впуска и выпуска. Газ засасывается на стороне впуска, сжимается и через выхлопные клапан и патрубок выбрасывается из насоса.

Устройство пластинчато-статорного насоса
Рис. 68. Устройство пластинчато-статорного насоса: 1 — камера, 2 — ротор, 3 — кожух, 4 — эксцентрик, 5 — выпускной патрубок, 6 — выпускной клапан, 7 — пластина, 8 — впускной патрубок, 9 — впускной канал, 10 — подшипник

Производительность всех механических насосов определяется объемом рабочей камеры и скоростью вращения ротора. В пластинчато-роторных и пластинчато-статорных насосах между подвижными частями возникают значительные силы трения, что ограничивает возможную скорость вращения ротора и соответственно производительность насоса. Поэтому производительность насосов этих типов невелика, и их используют либр как вспомогательные, либо как самостоятельные для создания разрежения до 1 Па в системах с малым объемом. Из этой группы насосов наибольшее распространение получили пластинчато-роторный ВН-494 и пластинчато- статорные ВН-461 и РВН-20 насосы.

Устройство золотникового насоса
Рис. 69. Устройство золотникового насоса: 1 — цилиндрическая обойма, 2 — ротор, 3 — отверстие, 4 — шаровой шарнир, 5 — золотник (плунжер), 6 — выпускной клапан

Значительно более производительными являются масляные насосы золотникового (плунжерного) типа (рис. 69), в которых на эксцентричный ротор насажена цилиндрическая обойма, выполненная заодно с полым параллелепипедом, открытым сверху и через прорези на боковой поверхности сообщающимся с камерой насоса. При вращении ротора обойма скользит по стенке камеры, а параллелепипед совершает в золотнике возвратно-поступательное и колебательное движения. Газ через полость параллелепипеда и прорези поступает в увеличивающийся объем выпуска, затем сжимается и выбрасывается через выпускной клапан.

В этих насосах параллелепипед выполняет роль впускного канала и разграничивающей пластины. Отсутствие пластин, а следовательно, и трения между их торцами и ротором позволит увеличить число оборотов и повысить производительность насоса. Насосы этого типа (ВН-10-2; ВН-20-1; ВН-150; ВН-300; ВН-500) имеют быстроту действия десятки и сотни литров в секунду (см. рис. 66, а), и их широко применяют в промышленных установках для создания разрежения до 1 Па.

Механические насосы всех типов с масляным уплотнением не приспособлены для откачки паро-газовых смесей, в частности влажного воздуха. В этих насосах к моменту открытия выпускного клапана газ сжимается и степень сжатия его может достичь 700. При этом водяной пар, если даже его парциальное давление в камере, из которой он откачивается, невелико, конденсируется, вода смешивается с маслом и вместе с ним попадает на сторону впуска. Там вода вновь испаряется и совершает новый кругооборот.

Для удаления влажного воздуха масляные насосы снабжают газобалластными устройствами, при помощи которых в определенный момент в объем сжатия подается некоторое количество сухого атмосферного воздуха. За счет балластного газа выпускной клапан открывается прежде, чем парциальное давление достигает точки росы, и из насоса выбрасываются и газ, и пары.

Применение газобалласта уменьшает быстроту действия насосов и снижает предельный вакуум, но расширяет возможности использования насосов. В насосах с масляным уплотнением используют специальное вакуумное масло ВМ-4 и ВМ-6, представляющее собой машинное масло, из которого в результате вакуумной перегонки удалены низкокипящие фракции. В процессе работы в местах трения вследствие местных перегревов происходит разложение масла, в результате которого в масле вновь появляются легкие углеводороды. Они увеличивают упругость паров и снижают предельный вакуум, создаваемый насосом. Кроме того, вакуумное масло способно поглощать влагу и окисляться, теряя первоначальные свойства. Поэтому масло в вакуумных насосах необходимо периодически заменять. Наряду с масляными насосами в металлургических установках иногда применяются сухие механические насосы.

Устройство многопластинчатого насоса
Рис. 70 Устройство многопластинчатого насоса

На рис. 70 показан разрез сухого многопластинчатого насоса. Большое число пластин, свободно перемещающихся в пазах ротора, при его вращении центробежными силами прижимается к стенкам камеры. Вследствие эксцентричного расположения ротора объем, заключенный между двумя соседними пластинами, стенками камеры и поверхностью ротора, при вращении ротора все время изменяется, увеличиваясь на стороне впуска и уменьшаясь на стороне выпуска. В результате этого газ сжимается, и между сторонами впуска и выпуска поддерживается перепад давлений. Для предохранения от чрезмерного сжатия газа при работе в области высоких давлений на стороне впуска со стороны выпуска в корпус вмонтированы предохранительные клапаны (1-3).

На металлургических заводах получили распространение одноступенчатые (РВН-25; РВН-50; РВН-75) и двухступенчатые (ДРВН-25; ДРВН-50; ДРВН- 75) насосы этого типа. Цифры в маркировке насоса указывают его производительность, м3/мин, при разрежении 87 и 98% соответственно. Предельное разрежение, создаваемое одноступенчатыми насосами, достигает 98 %, двухступенчатыми — 99,5 %, что соответствует 2…0,5 кПа. Многоступенчатые насосы применяют в качестве вспомогательных для быстрого удаления основного количества газа из больших объемов, а также в качестве самостоятельных в системах, не требующих большого разрежения, но характеризующихся значительным газовыделением.

В последнее время все более применяются двухроторные сухие механические насосы серии ДВН или насосы Рута (рис. 71).

Принцип действия двухроторного насоса
Рис. 71. Принцип действия двухроторного насоса (а…в — последовательные стадии всасывания и выхлопа)

В рабочей камере такого насоса синхронно встречно вращаются две восьмеркообразные лопасти, приводимые в движение через шестеренную передачу от общего вала. Благодаря точному исполнению и регулировке лопасти при вращении не касаются одна другой и стен камеры, сохраняя зазоры порядка десятых долей миллиметра. Отсутствие трения между движущимися частями позволяет вращать лопасти со скоростью 2500…3000 об/мин, что обеспечивает высокую производительность насосов.

При сжатии газа через неуплотненные зазоры возможен его обратный прорыв, поэтому коэффициент сжатия газа в этих насосах, как правило, составляет 10…50, и давление на впуске определяется давлением выхлопа. Использование двухступенчатых насосов Рута в сочетании с механическим масляным, подключенным последовательно со стороны выпуска, позволяет получать предельное разрежение ~ 10-2 Па. В настоящее время в нашей стране выпускают высокопроизводительные двухроторные насосы, скорость откачки которых в интервале давлений 100…5 Па достигает 5 м3/с. Эти насосы целесообразно использовать в качестве бустерных в сочетании с механическими масляными.

В металлургических вакуумных установках широко используют также пароструйные насосы, важным преимуществом которых является отсутствие в них движущихся частей. В связи с этим пароструйные насосы более долговечны, характеризуются высокой производительностью, менее чувствительны к содержанию в откачиваемых газах металлургической пыли и паров воды.

Схема пароэжекторного насоса
Рис. 72 Схема пароэжекторного насоса:
1 — впускное отверстие, 2 — впускной патрубок удаляемого газа, 3 — диффузор, 4 — выпускной патрубок, 5 — воздушная камера, 6 — фланец сопла, 7 — паровое сопло, 8 — паровая камера

Пароструйные насосы по принципу работы в свою очередь подразделяют на пароэжекторные и диффузионные. Принцип действия пароэжекгорного насоса (рис. 72) основан на вязкостном (под действием сил внутреннего трения) захвате газа струей рабочего пара. Пар, подводимый под давлением 0,6…3,0 МПа в паровую камеру, через специальное сопло истекает в воздушную камеру. Потенциальная энергия давления пара при этом превращается в кинетическую, и струя пара в воздушной камере движется со сверхзвуковой скоростью, увлекая близлежащие слои газа. Струя пара и газ попадают в сужающуюся часть диффузора, где скорость движения возрастает, возникают турбулентные завихрения и происходит более полное перемешивание пара и газа. В плавно расширяющейся части диффузора движение пара и газа постепенно замедляется, и кинетическая энергия струи вновь превращается в потенциальную энергию давления. Вследствие этого между входом в диффузор и выходом из него поддерживается 4—10-кратный перепад давления. Таким образом, одноступенчатый пароэжекгорный насос с выхлопом в атмосферу позволяет создавать в воздушной камере разрежение 10…20 кПа. Для получения более низких давлений насос должен быть, многоступенчатым.

Широкое распространение на металлургических заводах пароэжекторных насосов объясняется дешевизной водяного пара, его однородностью, возможностью практически неограниченного его потребления, позволяющими проектировать пароводяные насосы на любую требуемую скорость откачки газа (до сотен тысяч литров в секунду). Их можно изготовлять из любых материалов и откачивать любые газы, в том числе агрессивные и загрязненные пылью, причем установка фильтров перед ними необязательна, и поэтому предоставляется возможность полностью использовать их производительность. Они дешевы в эксплуатации, могут работать на отработанном паре ТЭЦ и котельных. Для их установки в цехе не требуется дополнительных площадей, так как отдельные элементы насоса могут быть размещены по стенам, колоннам, потолкам как внутри цеха, так и снаружи его.

Пятиступенчатый пароэжекторный насос
Рис. 73. Пятиступенчатый пароэжекторный насос: I…III — промежуточные конденсаторы, 1…5 — ступени откачки

На рис. 73 представлена схема типичного пятиступенчатого пароэжекторного насоса. В многоступенчатых насосах для уменьшения расхода пара целесообразно устанавливать за эжекторной ступенью промежуточный конденсатор, в котором пар охлаждается водой, конденсируется и исключается из процесса дальнейшей откачки, а газ откачивается следующей ступенью. Однако в этом случае давление, создаваемое предыдущей ступенью, зависит от температуры воды в конденсаторе, так как давление на выхлопе не может быть меньше давления насыщенного пара охлаждающей воды в конденсаторе. При температуре воды 25…30 °С это давление составляет ~4 кПа. Следовательно, при коэффициенте сжатия 4…10 давление на входе не может быть менее 0,4…1 кПа. Для создания более низкого давления за первой ступенью конденсатор не устанавливают, а давление за ней обусловливается производительностью следующей ступени. Такая установка позволяет получать давление 60…130 Па. Устанавливая две, три и более ступеней без конденсации, при помощи пяти-шестиступенчатых насосов можно создавать разрежение до 10 мПа. Но отсутствие конденсаторов существенно увеличивает расход пара.

В пароэжекторных насосах наибольшее распространение получили так называемые барометрические конденсаторы смещения, принцип работы которых показан на рис. 73. Недостатком конденсаторов этого типа является необходимость отвода воды по барометрическим трубкам высотой > 10 м, обеспечивающим водяной затвор во избежание прорыва в насос атмосферного воздуха, поэтому эти конденсаторы необходимо размещать на высоте не менее 11 м от уровня воды в дренажном колодце. При включении пароэжекторных насосов пар подают вначале в последнюю ступень, а затем последовательно включают остальные, заканчивая первой. Многоступенчатые пароэжекторные насосы широко применяют в установках для внепечной дегазации стали. За рубежом пяти-шестиступенчатые насосы, работающие при давлениях 10…1 Па, применяют и в установках дуговых и индукционных плавильных печей, а также в качестве выхлопных ступеней диффузионных насосов.

Принцип работы трехступенчатого диффузионного паромасляного насоса
Рис. 74. Принцип работы трехступенчатого диффузионного паромасляного насоса: I…III — ступени откачки; 1 — корпус, 2 — водяное охлаждение, 3 — кольцевой канал для возврата масла в кипятильник, 4 — электронагреватель, 5 — кипятильник, 6 — концентрические паропроводы, 7 и 8 — выпускной и впускной патрубки

На рис. 74 представлена схема диффузионного паромасляного насоса. Насос имеет водоохлаждаемый металлический корпус в виде цилиндра с глухим днищем, в которое вставлены паропроводы с соплами. Рабочую жидкость заливают в кипятильник, и она подогревается электроподогревателем. Пары жидкости поднимаются по паропроводам к соплам, выходят через них в объем насоса и конденсируются на стенках, а образующийся конденсат по стенкам стекает вниз и вновь попадает в кипятильник.

В результате постоянного испарения и конденсации рабочей жидкости между паропроводами и объемом насоса поддерживается значительный перепад давлений. Вследствие этого, а также благодаря специальной конструкции сопел пар истекает в объем корпуса насоса со сверхзвуковой скоростью. Молекулы откачиваемого газа диффундируют в струю пара, при соударении с более тяжелыми частицами пара получают направленное движение вниз и к стенкам корпуса и скапливаются в зоне конденсации пара. Там они увлекаются в движение следующей ступенью откачки, последовательно сжимаются каждой ступенью, пока не попадут в зону действия насоса предварительного разрежения и удаляются из насоса.

Предельное разрежение, создаваемое диффузионными насосами, определяется числом ступеней насоса, конструкцией сопел, типом рабочей жидкости и температурой ее нагрева. В зависимости от создаваемого разрежения диффузионные насосы могут использоваться в качестве бустерных или высоковакуумных.

Обычно у диффузионных насосов предусматривают не более пяти ступеней откачки, что позволяет создавать разрежение порядка 10-5 Па. Высоковакуумные насосы характеризуются максимальной скоростью откачки при давлении 10-2…10-3 Па, бустерные — при давлении порядка 10-1 Па. Насосы обоих типов могут работать при противодавлении не более 102 Па.

В качестве рабочих жидкостей для диффузионных насосов, применяемых на металлургических заводах, получило распространение специальное вакуумное масло типа Г марок ВМ-1, ВМ-2, ВМ-3, ВМ-5, ВМ-7, представляющее собой продукт перегонки нефти, и кремнийорганические жидкости — силиконы. Недостатками нефтяных масел являются их чувствительность к перегреву и окисляемость при контакте в разогретом состоянии с воздухом. При перегреве масло разлагается с образованием легких углеводородов, в результате чего изменяются упругость паров и характеристики насоса. Окисление масла может вызвать осмоление насоса и резко изменить его характеристики. Силиконовые масла более однородны по составу и выдерживают длительное нагревание на воздухе до 150…200 °С, поэтому они более удобны для использования в диффузионных насосах. Однако использование силиконовых масел сдерживается сложностью их получения и более высокой стоимостью.

Приборы для измерения вакуума

Манометры для измерения давления ниже атмосферного часто называют вакуумметрами. В вакуумной аппаратуре, используемой на металлургических заводах, наиболее широкое применение нашли деформационные, теплоэлектрические и ионизационные вакуумметры.

Чувствительным элементом деформационных вакуумметров является тонкостенная серповидная трубка Бурдона, мембрана или сильфон. При изменении перепада давлений внешнего (атмосферного) и внутреннего (соответствующего давлению в измеряемой системе) изменяется радиус кривизны трубки, прогиб мембраны или сильфона. Эти деформации очень малы, поэтому обычно используют усиливающие устройства, увеличивающие показания стрелки. Такими усиливающими устройствами могут быть механические системы, индукционные, емкостные датчики и т. д Деформационные вакуумметры позволяют измерять давления в интервале 1 • 105 … 1 • 10-2 Па, однако наиболее чувствительны они в области сравнительно высоких давлений и применяются, в основном, для измерения давлений от 1 • 105 до 1 • 102 Па.

Принцип работы термоэлектрических вакуумметров основан на зависимости теплопроводности разреженного газа от его плотности. Термоэлектрические вакуумметры подразделяют на термопарные и вакуумметры сопротивления (рис. 75, а, б). В термопарных вакуумметрах с изменением давления изменяется температура нити накала, подогреваемой током постоянной величины. Температура нити непрерывно измеряется термопарой, спай которой припаян к нити. По величине т. э. д. с. судят о давлении в лампе, соединенной с вакуумным объемом.

Датчики вакуумметров
Рис. 75. Датчики вакуумметров:
а — термопарный ЛТ-2, б — датчик сопротивления М1-6, в — ионизационный ЛМ-2, 1 — стеклянный баллон, 2 — нить накала, 3— термопара, 4 — защитный колпачок (в нерабочем состоянии), 5 — металлический корпус, 6 — рабочая нить, 7 — коллектор, 8 — сетка, 9 — катод

Термопарные датчики выпускаются в стеклянном баллоне и с платиновой нитью накала (лампа ЛТ-2) или в металлическом корпусе и с танталовой или никелевой нитью накала (лампа ЛТ-4М, термопара хромель-копелевая). В датчиках вакуумметров сопротивления при изменении давления изменяется сопротивление медной или платиновой нити, по которой пропускается стабилизированный ток. Сопротивление нити измеряют по мостовой схеме, и по степени разбалансировки моста судят о значении давления в лампе, соединенной с вакуумной системой. Датчики сопротивления также выпускают в стеклянных и металлических баллонах.

Термоэлектрические манометры позволяют измерять давление в пределах 102…10-2 Па с относительной погрешностью 10…50 %. Для измерений давлений в пределах 10-2… 10-5 Па используют ионизационные датчики. Из них наиболее распространена электронная ионизационная манометрическая лампа ЛМ-2 (см. рис. 75, в) с катодом, сеткой и коллектором ионов. Нагреваемый стабилизированным током катод эмиттирует электроны к сетке. На сетку подается положительный потенциал ∼ 200 В. Поскольку сетка выполнена из тонкой проволоки, электроны проскакивают через нее и по мере удаления тормозятся электрическим полем, а затем снова возвращаются к сетке. До попадания на сетку электроны совершают вокруг нее многократные колебания, благодаря чему увеличивается длина пробега каждого электрона.

При колебательном движении вокруг сетки электроны сталкиваются с молекулами газа и ионизируют их. Положительные ионы улавливаются коллектором — металлическим цилиндром, к которому приложен отрицательный потенциал 25 В. Количество ионов, попадающих на коллектор, при постоянном токе эмиссии зависят от плотности газа. Измеряя ионный ток, можно судить о давлении в лампе и в системе, к которой присоединена лампа. Недостатком электронных ионизационных датчиков является низкая стойкость раскаленного катода, который при повышении давления до 1 Па сгорает за несколько минут, поэтому в последнее время начали выпускать ионизационные лампы ЛМ-3 с иридиевым катодом, покрытым оксидом иттрия. Применение воздухостойкого иридиевого катода позволяет измерять давление в диапазоне от 1 до 10-5 Па при удовлетворительном сроке службы датчика.

Области рабочих давлений вакуумных насосов и датчики вакуумметров
Рис. 76. Области рабочих давлений вакуумных насосов и датчики вакуумметров

Рассмотренные конструкции вакуумных насосов и датчиков вакуумметров позволяют получать и измерять разрежение в широком диапазоне (рис. 76), обеспечивающем работу вакуумных установок металлургических заводов.

Вспомогательные элементы вакуумных систем

Типичная схема высоковакуумной установки (рис. 77), кроме вакуумной камеры 1 с вентилем 12, насосов 6 и 9, приборов для измерения разрежения 2, включает ряд вспомогательных элементов: вакуум-проводы 3 и 10, затворы 5 и 8, фильтры 11, ловушки 4, конденсаторы 7 и др.

Элементы высоковакуумной установки
Рис. 77. Элементы высоковакуумной установки

Вакуумные трубопроводы предназначены для соединения разных элементов вакуумных систем. Трубопровод должен иметь малую длину и большой внутренний диаметр, во всяком случае, условный диаметр (проход — ДУ) не должен быть меньше диаметра входного сечения насоса, так как большая длина и малый диаметр уменьшают пропускную способность системы и эффективную скорость откачки.

Вакуумные трубопроводы чаще всего выполняют из бесшовных труб из углеродистой или нержавеющей стали, а также из латуни и меди. Высоковакуумные участки 3 изготовляют, как правило, из нержавеющей стали. На стороне низкого и среднего разрежения широко применяют вакуумные шланги из специальных сортов вакуумной резины, которой свойственно малое газовыделение. В последнее время на этих участках начали широко применять шланги из искусственных синтетических материалов, например из поливинилхлорида и др. Для компенсации неточности изготовления, облегчения монтажа, а также для защиты установок от вибрации механических насосов и компенсации тепловых деформаций в вакуум-проводах предусматривают компенсаторы — участки резиновых труб, сильфоны, резиновые диски или тороиды и т. п. С целью герметичного перекрытия вакуум-проводов, напуска в вакуумную систему определенных количеств газов применяют разные затворы, краны, вентили, натекатели с дистанционным управлением от электромагнитных, электромашинных и пневматических приводов.

Для перекрытия низковакуумных трубопроводов, а также трубопроводов небольших диаметров применяют вешили (ДУ-25, ДУ-50, ДУ-80), напоминающие по конструкции водопроводные и газовые краны, но имеющие сильфонное уплотнение штока. В высоковакуумных ком м уникациях обычно применяют затворы форточного (ДУ-85, ДУ-160, ДУ-260, ДУ-380, ДУ-500) или шиберного (ДУ-900, ДУ-1200 и др.) типов. Затворы шиберного типа большого проходного сечения используют, как правило, в шлюзовых устройствах, позволяющих загружать в камеры крупногабаритные изделия без нарушения вакуума. Корпуса таких затворов изготовляют в виде прямоугольных коробок, и при открывании затвора клапанная тарелка и рычаги запирающего механизма полностью уходят в закрытую часть коробки (карман). Напуск в вакуумную систему атмосферного воздуха перед вскрытием вакуумной камеры или другого газа, необходимого для проведения технологических операций, осуществляется при помощи натекателей, напоминающих по конструкции игольчатые редукторы, в которых при вращении головки медленно перемещается запорная игла и медленно изменяется зазор между иглой и седлом. В результате обеспечивается плавное регулирование количества пропускаемого натекателем газа.

В металлургических вакуумных установках откачиваемые газы могут содержать много пыли. При попадании пыли в насосы вследствие трения между движущимися частями может происходить заклинивание трущихся поверхностей или резкое увеличение их износа. Для защиты механических насосов от пыли на вакуум-проводах устанавливают фильтры. Распространение получили фильтры очистки в основном двух конструкций. В фильтрах одной из этих конструкций фильтрующим элементом служат слои смоченных вакуумным маслом ВМ-4 колец длиной 15 мм из стальной трубы диаметром 3/4. В других фильтрах газ фильтруется, проходя через один или два слоя ткани, натянутой на стальной цилиндр с продольными прорезями.

Недостаток фильтров обеих конструкций заключается в сложности замены фильтрующих элементов, которые быстро забиваются пылью, вследствие чего резко снижается пропускная способность системы. При использовании диффузионных насосов возможно и загрязнение, происходящее с обратной стороны вследствие миграции из насосов в откачиваемый объем паров масла или другой рабочей жидкости, достигающей 5 мг /(ч • см2). Для защиты рабочих камер от загрязнения парами рабочей жидкости или продуктами ее разложения между насосами и камерой помещают специальные ловушки.

В вакуумных установках применяют механические (отражательные) и конденсационные (вымораживающие) ловушки одинаковых конструкций, но с разными режимами охлаждения: температура рабочих поверхностей у отражательных ловушек приблизительно равна температуре откачиваемого газа, а у вымораживающих значительно ниже. Рабочие поверхности ловушек выполняют в виде жалюзи, системы диафрагм, колец, пластин, образующих каналы в виде щелей так, чтобы прямолинейно движущиеся пары не могли пройти через них, не столкнувшись с поверхностью ловушки.

Для интенсификации конденсации паров на рабочих поверхностях ловушки охлаждаются водой (механические) или жидким азотом, фреоном и т. д. (конденсационные). Конденсационные ловушки не только предотвращают миграцию масла, но и являются своеобразным высоковакуумным насосом, так как на их рабочих поверхностях одновременно конденсируются некоторые углеводороды, углекислый и другие газы. Используют их, как правило, в высоковакуумных установках.

Важнейшим требованием, предъявляемым к вакуумным системам, является их герметичность. Установкой мощных насосов можно добиться требуемых давлений даже при наличии неплотностей в системе, но при этом вследствие натекания атмосферного воздуха в системе будут постоянно находиться вредные газы при таких парциальных давлениях, что их присутствие может резко снизить качество металла. Для оценки герметичности системы проверяют величину натекания по изменению давления в системе за определенный промежуток времени при закрытых затворах, перекрывающих вакуум-проводы к насосам. Величину натекания, м3 • Па/с, рассчитывают по формуле:

N = (VΔP)/τ,

где V — объем изолированной системы, Δ Р — изменение давления в системе объемом V за время измерения τ.

При отсоединении насосов давление в системе возрастает вследствие внутреннего газовыделения в результате главным образом десорбции газов и поступления атмосферного воздуха через неплотности, поэтому повышенное натекание не свидетельствует о негерметичности системы. Для установления причины повышенного натекания необходимо определить характер его изменения во времени. Если натекание определяется внутренним газовыделением, то оно постепенно уменьшается, и для достижения допустимых пределов натекания систему следует подольше подержать под вакуумом. При наличии неплотностей давление в изолированной системе в процессе измерения натекания монотонно возрастает. При такой зависимости давления от времени необходимо установить участок негерметичности и устранить ее. Простейшим способом обнаружения неплотностей является впрессовывание системы: в систему накачивают сжатый воздух или любой другой газ до давления 200…400 МПа, а места возможных утечек смазывают мыльным раствором; неплотности обнаруживаются по выделению пузырей.

Опрессованную систему можно проверить также посредством переносного галоидного течеискателя ГТИ-3, очень чувствительного к присутствию в атмосфере галоидов (реагирует при концентрации галоидов — фреона, тетрахлорида углерода и др. 0,0001 %). Для этого при опрессовании в систему добавляют галоидосодержащий газ и подозрительные места проверяют щупом в виде пистолета, в стволе которого находится чувствительный датчик, а в торцевой части — вентилятор для прокачивания газа через датчик. Датчиком является нагретая до 800…900 °С платиновая проволока. При появлении в газовой среде галоидов с поверхности платиновой нити резко возрастает испускание положительных ионов, улавливаемых коллектором. Резкое увеличение силы ионного тока регистрируется стрелочным прибором и генератором звуковых колебаний.

Имеется вакуумная модель галоидного течеискателя ВАГГИ-4, датчик которого вакуумплотно подсоединяется к системе, и с его помощью анализируют состав откачиваемых газов. В этом случае подозрительные участки обдуваются снаружи при непрерывной откачке.

Гелиевые течеискатели ПТИ-6 и ПТИ-7 представляют собой индивидуальный вакуумный блок со встроенной упрощенной масс-спектрометрической камерой, настроенной на гелий. Гелиевые течеискатели подключают на форвакуумной линии после диффузионных насосов. Собственный вакуумный блок течеискателя отбирает из общего потока откачиваемых газов небольшие порции и направляет их в масс-спектрометрическую камеру. В случае попадания в систему гелия, которым обдувают снаружи подозрительные места, в камере генерируется ионный ток, который регистрируется стрелочным прибором и преобразуется в звуковой сигнал.