Электрометаллургия

Раскисление стали

Высокая концентрация кислорода, растворенного в стали (повы­шенная активность кислорода), полученная после окончания окисли­тельных процессов, не дает возможности получить качественный сли­ток, так как понижение температуры металла в процессе кристаллиза­ции приводит к возобновлению реакции окисления углерода [С] + [О] → СОгаз и образованию газовых пузырей, как правило, ос­тающихся в слитке и не всегда заваривающихся при обработке давле­нием. Неиспользованный при протекании этой реакции кислород вы­деляется из металлического расплава в конце кристаллизации в виде пленок оксида железа FеО по границам зерен и резко ухудшает меха­нические свойства стали. Это вызывает необходимость проведения раскисления металла. Раскислением называют технологическую опе­рацию, приводящую к снижению концентрации растворенного кисло­рода (или активности кислорода) в стали до пределов, обеспечиваю­щих требуемое качество готового металла. Содержание растворенного в металле кислорода можно уменьшить или за счет снижения общего содержания кислорода, или путем связывания растворенного кислоро­да в прочные соединения, не растворяющиеся в стали. Известны следующие способы раскисления стали: осаждающее (ранее не совсем точно называвшееся глубинным) раскисление; экстракционное, или диффузионное, раскисление (раскисление шлаком); раскисление обра­боткой вакуумом и электрохимическое раскисление. В практике стале­плавильного производства применяют первые два способа, в последнее время все чаще используется и раскисление обработкой вакуумом.

При осаждающем раскислении в металлический расплав вводят элементы-раскислители, обладающие большим химическим сродством к кислороду, чем железо. В результате протекания реакции между рас­творенным кислородом и раскислителем образуется практически не растворимый в железе оксид, плотность которого меньше плотности жидкой стали, т. е. растворенный кислород переводится в нераствори­мый оксид и в расплаве образуется своеобразный «осадок» из нерас­творимых оксидов. Полученный «осадок» всплывает или каким-либо другим способом удаляется в шлак. Отсюда и название способа — осаждающее раскисление. Так как раскислители обычно вводят (или пы­таются вводить) в глубину металлического расплава, то данный способ раскисления иногда называют глубинным раскислением. В общем виде осаждающее раскисление можно изобразить следующей схемой:

m[R] + n[O] = (RmOn),

где R — элемент-раскиcлитель.

В металлургической практике для осаждающего раскисления стали чаще всего используют (как наиболее дешевые и доступные) марганец в виде ферромарганца, кремний в виде ферросилиция, алюминий, уг­лерод в различном виде. Иногда для раскисления стали используют более дорогие сплавы щелочно-земельных металлов (чаще кальция) и редкоземельных металлов (с преобладанием церия). Все реакции рас­кисления такими раскислителями идут с выделением тепла, поэтому глубина протекания реакции раскисления увеличивается при пониже­нии температуры (равновесие реакции раскисления сдвигается вправо, в сторону образования дополнительного количества оксида раскислителя). Оксиды элементов-раскислителей, образующиеся в процессе раскисления, в отечественной специальной литературе принято назы­вать продуктами раскисления. Продукты раскисления, образующиеся в жидком металле в процессе технологической операции раскисления, принято называть первичными продуктами раскисления. В течение всего времени существования научно обоснованных технологий сталеплавильного производства специалисты стремились проводить осаж­дающее раскисление так, чтобы первичные продукты раскисления возможно более полно и возможно быстрее удалялись из металла. Этой проблеме были посвящены многие исследования, результаты которых позволили металлургам быстро и почти полностью удалять из металла первичные продукты раскисления. Но в процессе кристалли­зации стали при понижении температуры реакции осаждающего рас­кисления продолжают идти, при этом образуются «новые» (вторичные) продукты раскисления, которые уже практически не могут уда­литься из кристаллизирующего очень вязкого металла и остаются в стали. Поэтому после осаждающего раскисления готовая сталь всегда содержит некоторое количество неметаллических включений — про­дуктов раскисления, что и является главным недостатком данного спо­соба раскисления. Но благодаря простоте осуществления операции и большой скорости удаления растворенного кислорода из металла оса­ждающее раскисление остается основным способом раскисления стали.

Для уменьшения количества и размеров вторичных (кристаллиза­ционных) продуктов раскисления очень важно понизить концентрацию растворенного кислорода при раскислении жидкого металла до воз­можно более низких значений. Остаточная концентрация растворенно­го кислорода в металле зависит от температуры, концентрации элемен­та раскислителя и раскислительной способности элемента- раскислителя. Раскислительной способностью элемента-раскислителя принято называть концентрацию растворенного кислорода [O]р (или активность кислорода a[O]), соответствующую конкретной концентра­ции элемента-раскислителя, при которой он находится в равновесии с кислородом при данной температуре. Данные о раскислительной спо­собности различных раскислителей получают в лабораторных иссле­дованиях, так как в производственных условиях достичь равновесия реакций раскисления не удается. Обычно сравнение раскислительной способности раскислителей проводят при температуре 1600 °С. Для практических нужд удобнее всего использовать данные о раскислительной способности, представленные графически в координатах [O]р — [R] или a[O] — [R], lga[O] и т.д. Следует отме­тить, что данные о раскислительной способности тех или иных раскислителей, полученные разными исследованиями, часто сильно различа­ются. Это объясняется тем, что применяется различное оборудование, различные методики исследования; а также различной исходной кон­центрацией растворенного кислорода и различным составом продуктов раскисления.

Кислород — постоянный спутник железа и стали. Максимальная растворимость кислорода в жидкой стали при температуре ее плавления не превышает 0,22%. С повышением температуры растворимость кислорода в жидкой стали увеличивается. Кислород в стали частично находится в виде раствора, входя, главным образом, в состав неметаллических включений: оксидов — FeO, MnO, SiO2, Al2O3, CaO и ряда их соединений между собой и серой (так называемые силикаты, алюминаты, шпинели, оксисульфиды и пр.).

Кислород ухудшает механические свойства стали, снижает ее ударную вязкость при низких температурах, уменьшает временное сопротивление (прочность на разрыв), повышает неоднородность металла. Комбинированные кислородные и сернистые соединения образуют легкоплавкие неметаллические включения, располагающиеся по границам зерен. В процессе обработки давлением (прокатка или ковка) в таком металле при высоких температурах возможно образование трещин и рванин (явление красноломкости).

Форма, количество и состав кислородных включений в готовой стали зависят от способов раскисления металла, внепечной обработки, разливки и условий затвердевания расплава, а также от характера процессов выплавки стали (основной или кислой). Раскисление стали проводят таким образом, чтобы уменьшить в ней содержание кислорода и неметаллических включений и понизить их вредное влияние на качество металла. Для этого применяют следующие методы раскисления стали: диффузионное — воздействие на металл шлаком с низким содержанием оксидов железа; осадочное — воздействие на металл непосредственно элементами-раскислителями; комбинированное — одновременное воздействие на металл шлаком и элементами- раскислителями.

При равновесии отношение содержания кислорода в железе [О] к содержанию монооксида железа в шлаке (FeO) является постоянной величиной и зависит от основности шлака и температуры. При основности шлака, равной 2, и температуре 1600 °С данное отношение составляет величину 0,005. Если содержание (FeO) в шлаке ниже равновесного, то обеспечивается переход кислорода в виде FeO из металла в шлак. Другими словами, обработкой ванны безжелезистым шлаком можно добиться снижения содержания кислорода в металле.

Присадка в печь порошкообразных материалов — кокса, ферросилиция, алюминия — обеспечивает взаимодействие элементов-рас- кислителей с (FeO) шлака и снижение его концентрации ниже 0,5%. Если конечное содержание (FeO) в шлаке 0,5%, то конечное содержание кислорода в металле в условиях равновесия, определяемое из соотношения [О]кон/0,5 = 0,005, составит: [0]кон = 0,0025%.

Практически равновесие между шлаком и металлом в восстановительный период плавки (доводки) не достигается и содержание кислорода в металле перед выпуском из электропечи колеблется в пределах 0,003—0,012%. При этом уменьшение содержания кислорода в металле происходит, в основном, за счет диффузии кислорода из металла в шлак, поэтому такой способ раскисления называют диффузионным. Диффузионное раскисление ванны металла имеет место при выплавке стали в дуговых печах емкостью до 25 т. Процесс осуществляют под «белым» *(серым) или карбидным шлаком. Белый шлак получают раскислением основного шлака коксом, а затем порошками ферросилиция и алюминия. Карбидный — в результате интенсивного раскисления известкового шлака порошком кокса.

Современные большегрузные дуговые печи оборудуют высокопроизводительными установками для отсоса и очистки отходящих газов, которые при работе создают интенсивный газообмен в рабочем пространстве.

С учетом этого восстановительный шлак требуемых состава, консистенции и раскисленности наводят на жидкой ванне в печи за 15-20 мин до выпуска плавки в ковш путем интенсивной присадки порошков кокса, ферросилиция и алюминия. Период доводки металла (корректировка химического состава стали, нагрев металла и др.) проводят в течение минимального времени под известковым шлаком с основностью 3—4.

Диффузионный способ рафинирования металла позволяет существенно снизить загрязненность стали продуктами раскисления — неметаллическими включениями, так как взаимодействие происходит в шлаке и на поверхности раздела металл-шлак. Однако процесс малопроизводителен. Формирование восстановительного основного шлака к моменту выпуска плавки из большегрузной печи позволяет существенно повысить эффективность взаимодействия фаз в момент слива шлака и металла и тем самым обеспечить высокую степень рафинирования стали от кислорода и серы.

Раскисление стали путем непосредственного ввода в жидкий металл раскислителей в виде кусков или порошка называют глубинным или осадочным. Оно имеет место в металле на разной глубине в зависимости от удельного веса материала-раскислителя, размеров его кусков и способа ввода в металл. Эффект осадочного раскисления металла возрастает с уменьшением температуры плавления веществ- раскислителей и с повышением их растворимости в железе. Сочетание процессов осадочного раскисления металла с диффузионным взаимодействием элементов-раскислителей с кислородом относят к комбинированным методам.