Внепечная обработка стали

Перспективы использования кислых сталеплавильных процессов

В возникших полтора века назад тех­нологиях массового производства ли­той стали — бессемеровском и марте­новском — на начальном этапе разви­тия использовались кислые огнеупоры (на базе кремнезема, SiO2).

Использование кислых шлаков не давало возможности проводить опера­ции десульфурации и дефосфорации. Необходимость борьбы с серой и фос­фором явилась одной из главных при­чин перехода на работу с основными шлаками и на использование основ­ных огнеупоров.

При этом сама технология ведения плавки в конвертерах, в основных электро- и мартеновских печах, строи­лась таким образом, чтобы в процессе (в ходе) самой плавки обеспечить полу­чение в конце операции металла нужно­го состава и с низким содержанием серы и фосфора.

В настоящее время ситуация изме­нилась коренным образом: современ­ные методы внепечной обработки чугу­на и стали обеспечивают получение в конечном счете металла нужного со­става и с минимальным содержанием вредных примесей в комплексе стале­плавильный агрегат—внепечная обра­ботка.

Неметаллические включения в кислой стали имеют другую природу, в частности отсутствуют грубые малодеформируемые включения алюмина­тов кальция и магния, что для ряда ма­рок является важным. Особенностью включений в кислой стали является их круглая форма, сохраняющаяся после прокатки, в то время как включения основной стали часто представляют собой вытянутые пластинки или це­почки, из-за которых механические свойства основной стали в попереч­ном направлении значительно ниже, чем в продольном. В кислой же стали анизотропия механических свойств, особенно ударной вязкости и упругос­ти, ниже. Кроме того, механические свойства кислой стали, как правило, более стабильны от плавки к плавке, чем основной стали того же состава.

Известны работы, оказывающие положительное воздействие кислых шлаков на качество металла, прежде всего на чистоту по неметаллическим включениям. В частности, это иссле­дования с целью повышения качества подшипниковой стали, в ходе которых сталь ШХ15, выплавленную в 70-т ДСП и 140-т мартеновской печи, об­рабатывали кислым шлаком. Полученные результаты свидетельствуют о возможности резкого снижения за­грязненности подшипниковой стали как строчечными оксидными, так и наиболее опасными глобулярными включениями при обработке ее кис­лым шлаком.

Из исследований последнего вре­мени обращает на себя внимание ра­бота, выполненная на Белорусском металлургическом заводе (доклад на ГУ конгрессе сталеплавильщиков в 1996г.). Обработка стали, предназна­ченной для металлокрода, кислыми шлаками привела к заметному повы­шению ее качества, снижению обрыв­ности кордовых нитей и т. д. В про­цессе выпуска стали в ковш присажи­вали дробленый кислый шлак, металл раскисляли алюминием и легировали ферромарганцем.

Особенностью кислых шлаков яв­ляется более низкая (по сравнению с основными) растворимость газов и низкая азото- и водородопроницаемость (соответственно в 4—5 раз и в 2—3 раза ниже, чем у основных шлаков). В результате увеличения отношения SiO2: (FеО + МnО) от 0,72 до 2,11 во­допроницаемость шлаков снижается от 1,0 до 0,09 см3/100 г. Кислые шла­ки, для которых величина этого отно­шения менее 1,2, практически не про­ницаемы для азота.

По данным разных исследований, растворимость водорода в кислых шлаках во всех случаях оказывалась существенно (в несколько раз) ниже, чем в основных.

В работе Института черной метал­лургии Украины проведено сравнение содержания газов в металле в процессе конвертерной плавки при использова­нии конвертеров с кислой (1) и основ­ной (2) футеровками (рисунок 1). При этом уменьшение содержания азота в кислом металле было также объяснено меньшей азотопроницаемостью кис­лых шлаков.

Изменение содержания газов по ходу плавки в конвертерах с кислой (1) и ос­новной (2) футеровками
Рисунок 1 — Изменение содержания газов по ходу плавки в конвертерах с кислой (1) и ос­новной (2) футеровками

Распространение дуговых печей сравнительно небольшой емкости с кислой футеровкой обусловлено рядом преимуществ такого типа агрегатов:

  1. Меньшие тепло- и электропро­водность кислых огнеупоров и шла­ков. Из-за повышенного сопротивле­ния кислых шлаков электрические дуги в кислых печах короче, что обес­печивает более быстрый нагрев метал­ла до заданной температуры при мень­шем (на 10—15%) расходе электро­энергии.
  2. Ванны кислых печей имеют от­носительно большую глубину (нет дефосфорации и десульфурации — нет необходимости иметь большую поверх­ность контакта металл—шлак), как следствие — меньшие тепловые потери.
  3. Малая доля «жидкого» периода позволяет полнее использовать мощ­ность трансформатора.
  4. Материалы для футеровки кис­лых печей менее дефицитны, болеечем в 2 раза дешевле, чем основные огнеупоры, и обеспечивают достаточ­но высокую стойкость подины, стен и свода при периодической работе печи.
  5. По сравнению с основными кислые шлаки обладают более низ­кой электрической проводимостью и меньшей лучеиспускательной способ­ностью, что позволяет нагревать жид­кий металл более короткой дугой на высокой ступени напряжения печно­го трансформатора. Электрические дуги разрывают шлаковый покров и непосредственно контактируют с жидким металлом, передавая ему теп­лоту дуг. Это улучшает передачу тепла металлу, сокращает время плавления и увеличивает электрический к.п.д. установки. Уменьшению тепловых потерь че­рез кладку и более быстрому нагреву металла способствуют также более низкая теплопроводность и объемно-аккумулирующая способность кислых огнеупоров. Сравнительные показате­ли теплофизических величин огнеупо­ров приведены в таблице 1.   Показатели теплофизических величин огнеупоров6. Кислый процесс имеет и некото­рые технологические достоинства: а) низкая активность оксидов железа в шлаке и, следовательно, меньший угар в процессе плавки; б)высокие темпе­ратуры нагреваемого металла, т. е. при необходимости есть возможность для  восстановления кремния до значений, соответствующих марочному составу (без использования ферросилиция); в) процесс под кислым шлаком осо­бенно эффективен при переплаве хромсодержащих отходов. Известно, что по мере снижения основности
    шлака отношение (Сr) /[Сr] резко уменьшается. Это обстоятельство учи­тывается как при выплавке высоко­ хромистых сталей (марки типа 08X18Н10), так и сталей с относитель­но невысоким содержанием хрома (рисунок 2). Результаты сравнения ус­ловий работы основных и кислых ДСП сведены в таблице 2.
Изменение состава металла и шла­ка при выплавке в 10-т кислой печи стали марки 37ХНЗА
Рисунок 2 — Изменение состава металла и шла­ка при выплавке в 10-т кислой печи стали марки 37ХН3А

Качественное сравнение выплавки стали в печах с кислой и основной футеровками
Таблица 2 — Качественное сравнение выплавки стали в печах с кислой и основной футеровками

Проблемы эффективного исполь­зования кислых шлаков интересуют также конвертерщиков. Заслуживают внимания эксперименты, проведен­ные в Институте черной металлургии Украины и в конвертерном цехе заво­да им. Петровского. Эксперименты показали, что для стали, выплавлен­ной в конвертере с кислой футеров­кой, по сравнению с основной харак­терны снижение содержания азота, водорода и кислорода, повышение ударной вязкости толстого листа и уменьшение анизотропии свойств. В целом для процесса в конвертере с кислой футеровкой получены сниже­ние расхода сырья и энергоносителей, уменьшение количества отходов и по­вышение производительности конвер­теров.

Конечно, при решении вопроса о выборе той или иной футеровки нуж­но учитывать, что температура огне­упорности магнезита и хромомагнези­та 2000°С, а динаса 1730°С, однако по мере расширения методов искусствен­ного охлаждения отдельных элементов конструкций сталеплавильных агрега­тов влияние этого фактора уменьша­ется, а в ряде случаев вообще исчезает.

Ближайшее будущее покажет, ка­ковы перспективы использования тех­нологий плавки металла под кислым шлаком.